Smallest examples of strings of consecutive happy numbers
نویسنده
چکیده
A happy number N is defined by the condition S(N ) = 1 for some number n of iterations of the function S, where S(N ) is the sum of the squares of the digits of N . Up to 10, the longest known string of consecutive happy numbers was length five. We find the smallest string of consecutive happy numbers of length 6, 7, 8, . . . , 13. For instance, the smallest string of six consecutive happy numbers begins with N = 7899999999999959999999996. We also find the smallest sequence of 3-consecutive cubic happy numbers of lengths 4, 5, 6, 7, 8, and 9.
منابع مشابه
Tarski Number and Configuration Equations
The concept of configuration of groups which is defined in terms of finite partitions and finite strings of elements of the group is presented by Rosenblatt and Willis. To each set of configurations, a finite system of equations known as configuration equations, is associated. Rosenblatt and Willis proved that a discrete group G is amenable if and only if every possible instance of its configur...
متن کاملSequences of Generalized Happy Numbers with Small Bases
For bases b ≤ 5 and exponents e ≥ 2, there exist arbitrarily long finite sequences of d-consecutive e-power b-happy numbers for a specific d = d(e, b), which is shown to be minimal possible.
متن کاملOn Consecutive Happy Numbers
Let e > 1 and b > 2 be integers. For a positive integer n = ∑k j=0 aj × b j with 0 6 aj < b, define
متن کاملFast Generation of Fibonacci Permutations
In 1985, Simion and Schmidt showed that |Sn(τ3)|, the cardinality of the set of all length n permutations avoiding the patterns τ3 = {123, 213, 132} is the Fibonacci numbers, fn+1. They also developed a constructive bijection between the set of all binary strings with no two consecutive ones and Sn(τ3). In May 2004, Egge and Mansour generalized this SimionSchmidt counting result and showed that...
متن کاملFibonacci-Lucas densities
Both Fibonacci and Lucas numbers can be described combinatorially in terms of 0− 1 strings without consecutive ones. In the present article we explore the occupation numbers as well as the correlations between various positions in the corresponding configurations. (2000) Mathematics Subject Classification: 11B39, 05A15
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009